Z80 CPU Central Process Unit

The instruction sel contains 158 inslructions. The 78 instructions of the 8080A are inclucked as a subsel; 8030 A and 780° sollware compalibility is mainlained.

- $8 \mathrm{MHz}, 6 \mathrm{MHz}, 4 \mathrm{MHz}$ and 2.5 MHz clocks lor the $280 \mathrm{H}, 780 \mathrm{~B}, 280 \mathrm{~A}$ and 2850 CPU resull in rapid instruction exnculion with, consequent high data throughpul.
- The exlensive instruction sel includes string, bil, byle, and word operalions. Block searclies and bluck Iransiers logether with indexed and relative addressing result in the most powerlul data handling capabilities in the microcomputer industry.
- The $\mathbf{Z 3 0}$ microprocessors and associaled lamily of peripheral conlrollers are linked by a vectored interrupt system. This
syslem may be daisy-chained to allow implementation of a priority inlerrupl scheme. Little, it any, additional logic is required lor daisy-chaining.
- Duplicate sels of both general-purpose and llag registers are provided, easing the design and operation ol system sellware: Ihrough sirgle conlexi swilching. background-loreground programming. and single-level interrupt processing. In addilion, iwo I6-bit index registers facilitale program processing of tables and arrays.
- There are three modes of high speed inlerrupl processing: 8080 similar, nonZ80 peripheral device, and Z80 Family peripheral with or withoul daisy chain.
- On-chip dynamic memory relresh counter.

Figure 1. Logke Funcitions

General Description

The Z80, Z80A, Z80B and 280 H CPUs are third-generation single-chip microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable second-and third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six generalpurpose registers which may be used individually as either 8 -bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set culows operation in foreground-
background mode or it may be reserved for very fast interrupt response.

The 280 also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register.
The CPU is easy to incorporate into a system since it requires only a single +5 V power source. All output signals are fully decoded and timed to control standard memory or peripheral circuits, and it is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the 280 processors. Subsequent text provides more detail on the Z80 I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

Figure 2. Pin Configuration

M.C. NO CONNECTION

Figure 2a. Chip Carrier Pin Configuration

General Description (Continued)

Figure 3. CPU Block Diagram

280 Microprocessor Family

The 280, 280A, 280 B and 280 H microprocessor is the central element of a comprehensive microprocessor product family. This family works together in most applications with minimum requirements for additional logic, facilitating the design of efficent and cost-effective microcomputerbase systems.
Five components to provide extensive support for the $Z 80$ microprocessor. These are:

- The CTC (Couter/Timer Circuit) features four programmable 8-bit counter/timers, each of which has an 8 -bit prescaler. Each of the four channels may be configurated to operate in either counter or timer mode.
- The PIO (Parallel Input/Output) operates in both data-byte I/O transfer mode (with handshaking) and in bit mode (without handshaking). The PIO may be
configured to interface with standard parallel periperal devices such as printers, tape punches, and keyboards.
- The DMA (Direct Memory Access) controller provides dual port data transfer operations and the ability to teminate data transfer as a result o! a pattern match.
- The SIO (Serial Input/Output) controller offers two channels. It is capable of operating in a variety of programmable medes for both synchronous and asynchronous communication, including Bi-Synch and SDLC.
- The DART (Dual Asynchronous Receiver/Transmitter) device provides low cost asynchronous serial communication. It has two channels and a full modem control interface.

280 CPU Registers

Figure 4 shows three groups of registers within the $Z 80$ CPU. The first group consists of duplicate sets of 8 -bit registers: a principal set and an alternate set (designated by ' [prime], e.g., A'). Both sets consist of the Accumulator Register, the Flag Register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques as background-
foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt Register), the R (Refresh Register), the IX and IY (Index Registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus and additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

Fig. 4. CPU Regintors

CPU Registers (Continued)

Reglates		Slise (Bits)	Remarks
A. A^{\prime}	Accumulator	8	Stores an operand or the resuits of an operation
F. F'	Flags	8	See Instruction Set.
B. B^{\prime}	General Purpose	8	Can be used separateiy or as a 16 -blt register with C
C. C^{\prime}	General Purpoee	8	See B, above.
D. D^{\prime}	General Purpoee	8	Can be used separately or as a !6-bit register with E.
E. E	General Purpose	8	See D. above
H, H'	General Purpoee	8	Can be used separately or as a 16-bit register with L .
L. L^{\prime}	General Purpose	8	See H, above.
			Note: The (B,C), (D,E), and (H,L) sets are combined as follows: B - High byte C-Low byte D-High byte E-Low byte H-High byte L-Low byte
1	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrup: processing.
R	Refresh Register	8	Provides user-trasparent dynamic memary refresh. Lower seven bits are automatically incremented and all eigh: are placed on the address bus during each irstruction fetch cycle refresin time.
IX	Index Register	16	Used for indexed addressing.
IY	Index Register	16	Same as IX, above.
SP	Stack Pointer	16	Holds address of the top of the stack. See Push or Pop in instruction set.
$P C$	Program Counter	16	Holds address of next instruction.
$\mathrm{lFF}_{1} \cdot \mathrm{IFF} 2$	Interrupt Encble	Fup-Flope	Set or reset to indicate interrupt status (see Figure 4).
IMFa.IMFb	Interrupt Mode	Flip-Flops	Reflect Interrupt mode (see Figure 4).

Table 1. CPU Registors

Interrupts: General Operation

The CPU accepts two interrupt input signals: $\overline{N M I}$ and INT. The NMI is a nonmaskable interrupt and has the highest priority. INT is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. INT can be connected to multiple peripheral devices in a wired-OR configuration.

The $\mathbf{Z 8 0}$ has a single response mode for interrupt service for the non-maskable interrupt. The maskable interrupt, INT, has three programmable response modes available.
These are:

- Mode 0 - similar with the 8080 microprocessor.
- Mode 1 - Peripheral Interrupt service, for use with non-8080/Z80 systems.
- Mode 2 - a vectored interrupt scheme, usually daisy-chained, for use with Z80 Family and compatible peripheral devices.
The CPU services interrupts by sampling the $\overline{\mathrm{NMI}}$ and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.
Non-Maskable Interrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at all times by the CPU. $\overline{\mathrm{NMI}}$ is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shut-down after power failure has been detected.
After recognition of the $\overline{\mathrm{NMI}}$ signal (providing BUSREQ is not active), the CPU jumps to restart location 0066 H . Normally, software starting at this address contains the interrupt service routine.
Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the Z 80 response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and BUSREQ is not active) a special interrupt
processing cycle begins. This is a special fetch (MI) cycle in which IORQ becomes active rather than MREQ, as in normal MI cycle. In addition, this special $\overline{\mathrm{Ml}}$ cycle is automatically extended by two WAII states, to allow for the time required to acknowledge the interrupt request.

Mode 0 Interrupt Operation. This mode is similar to the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus. This is normally a Restart Instruction, which will initiate a call to the selected one of eight restart locations in page zero of memory. Unlike the 8080, the 280 CPU responds to the Call instruction with only one interrupt acknowledge cycle followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode I operation is very similar to that for the NMI. The principal difference is that the Mode I interrupt has a restart location of 0038 H only.

Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the 780 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8 -bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8-bits and the contents of the I register as the upper 8 -bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit $0\left(A_{0}\right)$ must be a zero.

Interrupt Priority (Daisy Chaining and Nested Interrupts). The interrupt priority of each peripheral device is determined by its physical location within a daisy-chain

Interrupts: General Operation (Continued)

configuration. Each device in the chain has an interrupt enable input line (IEI) and an interrupt enable output line (IEO), which is fed to the next lower priority device. The first device in the daisy chain has its IEI input hardwired to a High level. The first device has highest priority, while each succeding device has a corresponding lower priority. This arrangement permits the CPU to select the highest priority interrupt from several simultaneously interrupting peripherals.

The interrupting device disables its IEO line to the next lower priority peripheral until it has been serviced. After servicing, its IEO line is raised, allowing lower priority peripherals to demand interrupt servicing.

The $\mathbf{Z 8 0}$ CPU will nest (queue) any pending interrupts or interrupts received while a selected peripheral is being serviced.

Interrupt Enable/Disable Operation. Two flip-flops, IFF 1 and IFF 2 , referred to in the register description are used to signa! the

CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the 280 CPU Technical Manual.

Aetion	IFF_{2}	$\mathbf{I F F}_{2}$	Comments
CPU Reset	0	0	Maskable interrupt INT disabled
DI instruction execution	0	0	Maskable interrupt INT disabled
El instruction execution	1	1	Magkable interrupt INT enabled
LD A. I instruction execution	-	-	IFF $\mathrm{I}^{\text {P Parity flog }}$
LD A, R instruction execution	-	-	IFF $2 \rightarrow$ Parity flag
Accept $\overline{\text { NMI }}$	0	IFF ${ }_{1}$	$\mathrm{IFF}, \mathrm{IFF}_{2}$ (Maskabie interrupt INTdisabied)
RETN instruction execution	IrF 2	-	$\mathrm{IFF}_{2} \rightarrow \mathrm{IFF}_{1}$ a! completion of an NMI service routine.

Table 2. State of Flip-Flops

Instruction Set

The $\mathbf{Z 8 0}$ microprocessor has one of the most powerful and versatile instruction sets available in any 8 -bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory or between memory and I/O. It also allows operations on any bit in any location in memory.
The following is a summary of the $Z 80$ instruction set and shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. The 780 CPU Technical Manual and 280 CPU Programming Manual contain significantly more details for programming use.

The instructions are divided into the following categories:

- 8 -bit loads
- 16-bit loads
- Exchanges, block transfers, and searches
- 8 -bit arithmetic and logic operations
- General-purpose arithmetic and CPU control
o 16-bit arithmetic operations
- Rotates and shift
- Bit set, reset, and test operations
o Jumps
- Calls, returns, and restarts
- Input and output operations

A variety of addressing modes are
implemented to permit efficient and fast data transier between various registers, memory locations, and input/output devices. These addressing modes include:
a Immediate

- Immediate extended
- Modified page zero
- Relative
- Extended
- Indexed
- Register
- Register indirect
- Implied
o Bit

8-Bit Load Group

Msemeate	Syabelle Oppration	E	2		\cdots	ege	P/V	1	c	$\begin{aligned} & \text { Opeede } \\ & 714210 \end{aligned}$	Rex	Ma.d Byte	He.ef H Cyclee	ED.ef 7 Elates		Comenemp
i2 r. ${ }^{\prime}$	r-p	-	-	x	\bullet	x	-	-	\bullet	01 r		1	1	4	P. P^{\prime}	Ren.
L2 p. n	$r-n$	-	-	X	-		-	-	-	00×110		2	2	7		$\stackrel{\text { B }}{ }$
Lこ \%. (HL)	$r=(\mathrm{HL})$	-	-	x	-		-	-	-	01 ¢ 110		1		7	010	D
Lこ r. (LX + d)	$p-(L X+d)$	-	-	x	-	X	-	-	-	$\begin{array}{ccc} 11 & 011 & 101 \\ 01 & f & 101 \end{array}$	DO	3	5	19	011 100	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
										-d-					101	1
LC $\mathrm{s},(\mathrm{IY} * \mathrm{~d})$	$r=($ I + + $)$	-	-	X	-	X	-	-	-	$\begin{array}{ccc} 11 & 111 & 101 \\ 01 & ? & 110 \end{array}$	FD	3	5	19	III	A
LC (HL). r	(HL) -	-	-	X	-		-	-	*	$01: 10$?				7		
LC (LX + d). ?	$(d x+d)=?$	-	-	\mathbf{x}	-	$\overline{\mathrm{x}}$	-		-	$\begin{array}{lll} 11 & 011 & 101 \\ 01 & 110 & \end{array}$	DD	3	5	19		
: E (iY-d). t	$(1 Y * d)=p$	*	\bullet	X	-	X	*	-	*	$\begin{array}{lll} 11 & 111 & 101 \\ 0 & 110 & r \end{array}$	FD	3	5	19		
15 (Hi). n	$(H L)-n$	*	-	X	-	X	-	-	-	0 1,0 110	36	2	3	10		
$\pm D(x+d) . n$	$(\mathrm{x}+\mathrm{d})=0$	-	-	X	-	X	-	-	-	$\begin{array}{ccc} 11011 & 101 \\ \infty & 110 & 110 \\ -d- \end{array}$	$\begin{aligned} & \text { DD } \\ & 36 \end{aligned}$	4	5	19		
$L D(T Y * d) . n$	$(X+d)=n$	-	-	X	-	X	-	-	-	$\begin{gathered} 11111 \\ 0 \\ \infty \\ 1101 \\ -d-d 0 \end{gathered}$	$\begin{aligned} & \text { FD } \\ & 36 \end{aligned}$	4	5	19		
10A. (8C)	$A=(B C)$	-	\bullet	x	-	x	-	*	-	$\infty_{0}^{\infty} 001010$	01	1	2	7		
10 A. ($\mathrm{L}_{\text {(}}$)	A - (DE)	\bullet	-	x	-	X	-	-	-	$\infty 0110$	IA	1	2	7		
LDA. (no)	$A-(n n)$	-	-	X	-	X	-	-	-	$\infty 111010$	3A	3	4	13		
$10: 8 \mathrm{Cl}$ A	($8 C$) - 1	\bullet	*	x	-	X	\bullet	-	*	$\cdots-\frac{n-1}{000}$	02	1	2	7		
\square DEA. A	(DE) -1	-	-	X	-	X	-		-	00010010	12	i	2	7		
io (m) 1	$(\mathrm{n})=\mathrm{A}$			X		X			-	$\begin{gathered} \infty 110010 \\ -n- \end{gathered}$	32	3	4	13		
L. A :	$A-1$	1	t	X	0	X	IFF	0	*	$\begin{array}{ll} 11 & - \\ 11 & 101 \\ 01 & 101 \\ 010 & 111 \end{array}$	$\begin{aligned} & \text { ED } \\ & 57 \end{aligned}$	2	2	9		
LD R, A	A-R	1	t	X	0	X	LFF	0	*	it 101101 01011)11	ED	2	2	9		
LDI. 1	1-A	-	-	X		X	-	*	*	$\begin{array}{ll}11 & 101 \\ \text { Of } 000 & 111\end{array}$	ED 67	2	2	9		
LDA. A	$n-A$	-	-	X		X		-	-	$\begin{array}{lll} 11 & 101 & 10 \\ 01 & 0 c 1 & 111 \end{array}$	$\begin{aligned} & 50 \\ & 4 F \end{aligned}$	2	2	9		

NOTES: P. I' meam eny of the regimers A. B. C. D. E H. L.
If F the content of tre iribercupt wable lipe tlag. (IFF) mo
coped inee ine P/V lieg.
Fro at. explanation of tiag notaicon end armosis for
smamonic taties. Symbolic Nowtion werion
to lowne trabes.

16-Bit Load Group

MOTES: dd meny of the reguer pelve BC. DE. ML. SP.

$0.9 .-C_{l}=C . A_{H}-A$.

28400

Exchange, Block Transfer, Block Search Groups

(2) 2 theg wime upon matruction compiotion only.

8-Bit Mrithmetic and Logical Group

General-Purpose Arithmetic and CPU Control Groups

Meneoalc	$\begin{aligned} & \text { Sypbolic } \\ & \text { Opmetien } \end{aligned}$	8	2				$1 / \mathrm{N}$	*	c	Opeode		$\begin{aligned} & \text { Mo.el } \\ & \text { Prove } \end{aligned}$	Nacel M Cyclee	$\begin{gathered} \text { Ma.eit } T \\ \text { State } \end{gathered}$	Commate
2ג1	Converts acc. coetent Inlo pected BCD following add or oubtrect with peoted BCD operands.	1	1	X	1	X	P	-	1	- 100111	7	J	1	4	Decisol adjux cocumulator.
CPL	$\boldsymbol{A}-\boldsymbol{\lambda}$	-	-	Z	1	X	-	1	-	$\infty 101111$	25	1	1	4	Complemert secumulaser (one's complemert).
NES	A-0-A	1	1	X	1	χ	v	1	1	$\begin{array}{ll} 11 & 101 \\ 01 & 101 \\ 01 & 100 \end{array}$		2	2	8	Negele ece (two's complenert).
ecf	CY-CY	-	-	Σ	x	\%	-	0	1	- 111111	35	1	1	4	Compientente conty limg.
st	CY-1	-	-	X	0	x	-	0	1	- : 110111	37	1	1	4	Set cerry flog.
NO?	No operation	-	-	x	-	X	-	-	-	00000000	${ }^{\infty}$	1	1	4	
븃:?	CPU molved	\bullet	-	${ }^{\chi}$	-	${ }^{x}$	-	-	-	01110110	${ }^{76}$	1	1	4	
$2 i$ 。	TFF-0	-	-	${ }^{x}$	-	${ }^{\text {x }}$	-		-	11110011	F_{5}	1	1	4	
£:	IfF - 1	\bullet	-	${ }^{X}$	-	X	-	-	\bullet	11111011		1	1		
M	Sel internupt	-	-	X	-	X	-	-	-	$\begin{array}{lll} 11101 & 101 \\ 01 & 000 & 110 \end{array}$		2	2	8	
iM 1	Set in:errupt mode 1	-	-	X	-	X	-	-	-	$\begin{array}{lll} 11 & 101 & 101 \\ 01 & 010 & 110 \end{array}$		2	2	8	
: 9	Set interrupt mode 2	-	-	又	-	X	-	-	-	$\begin{array}{lll} 11 & 101 & 101 \\ 01 & 011 & 110 \end{array}$	ED	2	2	8	

WTES IfF sacicates the miotrupt ereble flip-ilco
CY molecetee the carry thp-flop

16-Bit Arithmetic Group

Wi:LS wet any of the repester pears BC. DE. ML. SP
PC is any of the requeter pere BC. DE. IX. Sp
rt as any of the regiter parr BC. DE, IY, SP

Rotate and Shift Group

Bit Set. Reset and Test Group

Menmone	Eprabolic Opmetion	8	2		Page角	8π	\%	C	$\begin{aligned} & \text { Opeode } \\ & x+51510 \text { niex } \end{aligned}$	$\begin{aligned} & \text { No.ed } \\ & \text { Dyme } \end{aligned}$	No.ed x Cyelos	No.et T frates	Comments
96\% \%	2-70	χ	1	x	1 x	x	0	-	$\begin{array}{lc} 11 \\ 01010 \\ 01 & 0 \\ 0 \end{array}$	2	2	8	$\frac{\mathrm{r}}{\mathrm{r}} \mathrm{R} \frac{\mathrm{Req}}{\mathrm{l}}$
Bit b. (hiu)	2- [$_{(1) / 6}$	X	1	X	$1 x$	x	0	-	$\begin{array}{llll} 11 & 0 & 01 \\ 01 & b & 11 \\ 01 & C B \end{array}$	2	3	12	$\begin{array}{ll} 001 & C \\ 010 & D \end{array}$
B:T b, (X - dib	$2-\left(\bar{x}+d_{0}\right.$	X	1	x	$1 \times$	x	c	-	11011101 CD 11 Dot 01: C8 $-\mathrm{d}-$ 01 b 110	4	5	20	011 E 100 H 101 L 111 A b Bit Teted
	$2-(\overline{I Y}+)_{0}$	x	1	x	1 X	x	0	-	$\begin{array}{llll} 11 & 111 & : 01 & 5 D \\ 11 & 001 & 011 & \mathrm{CB} \\ - & d & - \\ 01 & b & 110 \end{array}$	4	5	20	001 0 001 1 010 2 011 3 100 4 101 5 110 6 $1 i 1$ 7
SET b. r	$\mathrm{rb}_{\mathrm{b}}-1$	-	-	x	- X	-	-	-	$\begin{array}{lcl} 11 & 001 & 011 C B \\ \text { ITi } & b & 5 \end{array}$	2	2	8	
SET b. (HL)	$(\mathrm{HL})_{b}-1$	-	-	\mathbf{x}	- X	-	-	-	11001011 Ca (1) b 110	2	1	15	
$S E: b .(i x+d)$	$(t x+d)_{b}-1$	-	-	x	- \mathbf{x}	-	-	-	$\begin{array}{llll} 11 & 011 & 101 & D D \\ 11 & 01 & 011 & C B \\ - & d & - \end{array}$ $\text { [1) b } 110$	4	6	23	
SET b. $(1 Y$-d)	$(t y-d)_{b}-1$	-	-	X	- X	-	-	-		4	6	23	
¢. $55 \mathrm{~s} . \mathrm{m}$		-	-	x	- X	-	-	-	区				To form now apoode replece 01] ol SET b. with (1) Flege and ume ratco hor SET isprection.

Jump Group

Jump Grup (Continued)

NOTLS:

- reperementa the ontonaion in the roletive cedremine mode.
- is emged tro's compleatert mumber in the rape $<-123.120>$.
- -2 in the qpeode providow en effective addrets el pe $+\circ$ at PC m incremened by 2 prier to the edthtuen oll e.

Call and Return Group

MCTE: 'AETN tonde IFT 2 - UFF

Input and Output Grup

[^0]

Summary of Flag Operation

Intruction	D_{8}	2		4		8	H	$\begin{aligned} & \mathbf{D}_{\mathbf{y}} \end{aligned}$	Comentents	
ADD A. s: ADC A.	1	1	X	1	X	V	0	1	8-but add or add wh eerry.	
SUB a: SBC A a: CP a; NEG	1	1	X	1	X	V	1	t	O-bit subrrect, mbirect with carry. compare and negem ecemmulator.	
AND	1	t	X	1	X	P	0	0)		
OR s. XOR	1	1	X	0	x	p	0	$0)$	Logrical operetions.	
WV:	1	1	X	1	x	V	0	-	8-bit merement.	
DEC	$!$	1	X	1	x	V	1	-	Q-bit decremant.	
ADD DD.	-	-	X	X	x	\bullet	0	1	16-bu edd.	
ADC ML. \quad	1	1	x	\boldsymbol{x}	x	V	0	1	16 bit edd whth earry.	
SOC HL,	1	1	x	I	X	V	1	1	16-bu mberect with carry.	
RLA. RLCA. RRA: RRCA	-	-	x	0	X	-	0	1	Rotate eccumulator.	
RL m: RLC m; RR m: ARC m; SLA m; SAA m: SRL m	1	1	x	0	X	P	0	1	Rotem and shift locetions.	
RLD: RRD	1	1	x	0	x	P	0	-	Roceve digit let and right.	
DAA	1	1	x	1	x	P	-	t	Decimal edjust eccumulator.	
CPL	\bullet	-	X	1	x	-	1	-	Comploment eccumuletor.	
SCF	-	-	x	0	x	-	0	1	Set cerry.	
CCF	*	-	X	X	X	*	0	t	Complement carry.	
W Nr (C)	1	1	x	0	x	P	0	-	Input reginter indirect.	
ONI IND OUTL: OUTS	X	1	x	X			1	b)	Block input and ourput. $2=0$ UB $=0$ athervise $2=0$.	
TNIR: INDR: OTER: OTDR	X	1	x	X	x	x	1	\bullet	Block mavt and culput 2-0 0 - 0 ctrerviso 2 -0.	
LDI; LDD	x	x	X	0	x	1	0	- $\}$		
LDIR: LDOA	X	X	X	0	x	0	0	-		
CPI: CPIA; CPD: CPOR	\boldsymbol{X}	1	X	X	\boldsymbol{X}	1	1	-	Block seerch indervetions. $Z=1 \\| A=(H L)$. atherwmo $Z=0 . P N=1$ $H B C=0$, othermien $P N=0$.	
LD A. I. LD A. A	t	1	\mathbf{x}	0	X	IfF	0	-	The ceatert of the miertupt eneble lippllop (IFF) n ecpled mathe PN fieg.	
AIT b ,	X	1	X	1	X	χ	0	-	The atate of bit b of locetios is is copled trio the 2 lag .	

Symbol

S Sign flag. $S=1$ the MSB of the result is 1.
$\mathbf{Z} \quad$ Zero flag. $Z=1$ the result of the operation is 0 .
P/V Parity or overflow flag. Panty (P) and overflow (V) share the some flag. Logical operations affect this flag with the parity of the result while arithmetic operations affect this flog with the overflow of the result. If PN holds parity. P/V = It the result of the operation is even. $P N=0$ ti result is odd. II PN holds overflow. PN $=1$ if the result of the operation produced an overflow.
H Half-carry llag. $\mathbf{H}=1$ if the add or subtract operation produced a carry into or borrow from bit 4 of the accumulator.
$\mathrm{N} \quad$ Add/Subtract tlag. $\mathrm{N}=1$ it the previous operstion was a subtract.
H\&N H and N tlags are used in conjunction with the decimal adjust instruetion (DAA) to properly correct the result into packed BCD format following addition or subtraction using operands with pecked BCD lormat.
C Carry/Link flag. $C=1$ if the operation produced a carry from the MSB of the operand or result.

P PN fleg affected according to the parity result of the operation.
Any one of the CPU registers A, B. C. D. E. H, L. Any 8-bit location for all the addressing modes allowed for the particular instruction.
Any 16-bit bocation for all the addressing modes ailowed for that instruction.
Ary one of the two index registers IX or IY. Refresh counter.
8 -bit value in range $<0.255>$.
16 -bil value in range $\langle 0.65535\rangle$.

Pin Descriptions

$\mathrm{A}_{0} \cdot \mathrm{~A}_{15}$. Address Bus (output, active High, 3-sta!e). $A_{0} \cdot A_{15}$ form a 16 -bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64 K bytes) and for I/O device exchanges.
BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their highimpedance states. The external circuitry can now control these lines.
BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RL, and WR to go to a high-impedance state so that other devices can control these lines. BUSREQ is normally wire-ORed and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.
$\mathrm{D}_{0}-\mathrm{D}_{7}$. Data Bus (input/output, active High, 3-state). D_{0} - D_{7} constitute an 8 -bit bidirectional data bus, used for data exchanges with memory and I/O.
HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.
INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wire-ORed and requires an external pullup for these applications.
IORQ. Input/Output Request (output, active Low, 3 -state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with MI during an interrupt acknowledge cycle to indicate that an interrupt response vector
can be placed on the data bus.
MI. Machine Cycle One (output, active Low).

M1, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. M1, together with IORQ, indicates an interrupt acknowledge cycle.
MREQ. Memory Request (output, active Low, 3 -state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation. NMI. Non-Maskable Interrupt (input, negative edge-triggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066 H .
RD. Read (output, active Low, 3 -state). $\overline{\mathrm{RD}}$ indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.
RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0 . During reset time, the address and data bus go to a high-
impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.
RFSH. Refresh (output, active Low). $\overline{\text { RFSH, }}$ together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.
WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transier. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from refreshing dynamic memory properly. Wh. Write (output, active Low, 3 -state).
WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

CPU Timing

The 780 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write

- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the WAIT input with the falling edge of clock state T_{2}. During clock states T_{3} and T_{4} of an $\overline{M 1}$ cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

NOTE: I_{w}-Wart crele addad when necessery for slow ancilisary devices.

CPU Timing (Continued)

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch ($\overline{\mathrm{M} 1}$) cycle. The MREQ and $\overline{R D}$ signals function exactly as in the fetch cycle. In a memory write
cycle, $\overline{M R E Q}$ also becomes active when the address bus is stable. The WR line is active when the data bus is stable, so that it can be used directly as an RW pulse to most semiconductor memories.

Figure 6. Memory Read or Write Cyeles

CPU Timing (Continued)

Input or Output Cycles. Figure 7 shows the timing for an VO read or VO write operation. During IVO operations, the CPU automatically inserts a single Wait state (T_{w}).

This extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.

NOTE. $T_{w}=$ One Wart cycle automatically inserted by CPU

Figure 7. Input or Output Cycles

CPU Timlag (Continued)

Interrupt Request/Rcknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special M1 cycle is generated.

During this $\overline{M 1}$ cycle, $\overline{\mathrm{IORQ}}$ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8 -bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

NOTE: 1) $T_{L}=$ Las state of previous instruction.
2) Twa Watt cycies sutomencally inserted by CPU(').

Figure 8. Interrupt Request/Acknowledge Cycle

CPU Timing (Continued)

Non-Maskable Interrupt Request Cycle. NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a normal instruction fetch
except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the NMI service routine located at address 0066 H (Figure 9).

- Although NM: is an asynctronous inpu!, to quare : :ee its being recognized on the toilowing machure cyeic. MMI's !aii::s edge
must occur no later then the rising edge of the clock cycle preceding TLAST.

Figure 9. Non-Maskable Interrupt Request Operation

CPU Timing (Continued)

Bus Reqeust/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD,
and $\overline{W R}$ lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

Figure 10. 2-Bus Request/Rcknowledge Cycle

CPU Timing (Continued)

Halt Acknowledge Cycle. When the CPU receives an Halt instruction, it executes NOP states until either an INT or NMI input is received. When in the Halt state, the HALT output is active and remains so until an interrupt is received (Figure ll).

Reset Cycle. $\overline{\text { RESET must be active for at }}$ least three clock cycles for the CPU to
properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes inactive, three internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be to location 0000 (Figure 12).

NOTE: $\overline{I N T}$ will also torce a Halt exit.
-See note, Figure 9.

Figure 11. Halt Acknowledge Cycle

Figure 12. Reset Cycle

AC Characteristics

Number	Symbol	Perametor	28400		28400A		284008		28400H	
			$\begin{aligned} & \mathrm{Min}_{(\mathrm{n}} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & \text { Min } \\ & (\mathrm{nc}) \end{aligned}$	$\underset{\substack{\text { Max } \\(\mathrm{ms})}}{ }$	$\begin{aligned} & \text { Min } \\ & \text { (ns) } \end{aligned}$	Max （ m ）	Min （as）	Max (ms)
1	Toc	Clock Cycle Time	400°		$250{ }^{\circ}$		165＊		125＊	
2	TwCh	Clock Pulse Width（High）	180°	－	110°	－	65°	－	55＊	
3	TwCi	Clock Pulse Width（Low）	180	2000	110	2000	65	2000	55	2000
4	TIC	Clock Fall Time	－	30		30		20		10
6	$\mathrm{TdCr}(\mathrm{A})$	Clock \dagger to Address Valid Delay		145	－	110	－	90	－	80
7	TdA（MREQt）	Address Valid to MREQ \downarrow Delay	125^{*}	－	65^{*}	－	35＊		20°	
8	TdCl（MREQf）	Clock \downarrow to $\overline{\text { MREQ }}$ ：Delay	－	100	－	85	－	70	－	60
9	TdCr（MREQr）	Clock \dagger to $\overline{\mathrm{MREQ}}$ i Delay		100		85		70		60
－ 10 ＿－TwMRECh＿MREQ Pulse Width（High）＿＿＿ 170°＿＿＿ 110°＿＿＿ 65°＿＿＿ 45°－＿＿										
11	TwMREC	$\overline{\text { MREQ Pulse Width（Low）}}$	$360{ }^{\circ}$	－	220°	－	$135 *$		100°	
12	TdCl（MREOT）	Clock \downarrow to $\overline{\text { MREQ }}$ ¢ Delay	－	100	－	85	－	70	－	60
13	TdCt（RDi）	Clock \downarrow to $\overline{\mathrm{RD}}+$ Delay	－	130	－	95	－	80		70
14	TdCr（RDr）	Clock \uparrow to $\overline{\mathrm{RD}}$ ¢ Delay	－	100	－	85	－	70	－	60
16	ThD（RD－）	Data Hold Time to $\overline{\mathrm{RD}} \uparrow$	－	0	－	0	－	0	－	0
17	TsWAIT， C （		70	－	70		60		50	
18	ThWAlT，${ }^{\text {ci）}}$	WAIT Hold Time after Clock \downarrow	－	0	－	0	－	0	－	0
19	TdCr（A！．：	Clock \uparrow to $\overline{M 1} \downarrow$ Delay	－	130	－	100	－	80		70
21		Clock \uparrow to $\overline{\text { RFSH }}$－Dealy	－	180	－	130	－	110	－	95
22	TdCr（6ESHr）	Clock \uparrow to $\overline{\mathrm{RFSH}} \uparrow$ Delay	－	150	－	120	－	100	－	85
23	TdClfi：－：	Clock \downarrow to $\overline{R D}$ i Delay	－	110	－	85	－	70	－	60
24	TdCr（fǐ）	Clock \uparrow to $\overline{R D}$ \＆Dealy	－	110	－	85		70	－	60
Data Setup to Clock \downarrow during $\mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$ or M_{5} Cycles										
26	TdA（MらこQ）	Address Stable prior to $\overline{\mathrm{IORQ}} \downarrow$	320＊	－	180^{*}	－	110°	－	75^{*}	－
27	TdCr（に？${ }^{\text {at }}$	Clock \uparrow to $\overline{\mathrm{OPRQ}} \downarrow$ Delay	－	90	－	75	－	65	－	55
28	TdCtに	Clock \downarrow to $\overline{\text { IORQ }} \uparrow$ Delay	－	110	－	85	－	70	－	60
29	TdCいいこ：	Data Stable prior to $\overline{W R} \downarrow$	190°	－	80＊		25＊		5＊	
31	TwWE	$\overline{\text { WR Pulse Width }}$	360＊	－	220°	－	135＊	－	100^{*}	－
32	TdClil： Sr ）	Clock \downarrow to $\overline{W R} \uparrow$ Delay	－	100	－	80	－	20	－	60
33	TdD（以：	Data Stable prior to $\overline{W R} \downarrow$	20^{*}	－	$\cdot 10^{*}$	－	－55＊		55＊	
34	TdCr（U：${ }^{\text {a }}$ ）	Clock \uparrow to $\overline{W R} \downarrow$ Delay	－	80	－	65	－	60	－	55
35	TdW＇E：，2）	Data Stable from $\overline{W R} \uparrow$	120°	－	60＊	－	30^{*}	－	15＊	－

[^1]

AC Charactoristics (Continued)

Number	Symbol	Parameter	28400		284008		284008		28400\%	
			$\begin{aligned} & \mathrm{Min} \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \text { (ns) } \end{aligned}$	Min (ns)	Max (as)	Mn (ns)	Max (ns)	Min $\text { (} \mathrm{ms} \text {) }$	Max (ns)
36	TdCi(HALT)	Clock \downarrow to $\overline{\text { HALT }}$ ¢ or \downarrow	-	300	-	300	-	260	-	225
37	TwNM.	NMI Pulse Width	80	-	80	-	70	-	60^{*}	-
38	TsBUSREQ(Cr)		80	-	50	-	50	-	40	-
39	TcB'JSUREQ(Cr) $\overline{\text { BUSREQ }}$ Hold Time after Clock 1		0	-	0	-	0	-	0	-
40	TdCr(BUSACKi) Clock \dagger to $\overline{\text { BUSACK }} \downarrow$ Delay			120		100		90		80
41	TdCl(BUSACKr)	Clock \downarrow to $\overline{\text { BUSACK }}$ + Delay	-	110	-	100	-	90	-	80
42	$\mathrm{TdCr}\left(\mathrm{T}_{2}\right)$	Clock \uparrow to Data Float Delay	-	90	-	90	-	80	-	70
43	$\mathrm{TdCr}\left(\mathrm{CT}_{2}\right)$	Clock \uparrow to Control Outputs Float Delay (MREQ. $\overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$)	-	110	-	80	-	70	-	60
44	$\mathrm{TdCr}\left(\mathrm{Az}^{\text {) }}\right.$	Clock \uparrow to Address Float Delay		110	-	90	-	80	-	70
45	$\operatorname{TdCTr}(\AA)$	$\overline{\text { MREQ }} \uparrow \overline{\text { IORQ } \uparrow, \overline{R D} \uparrow \text {, and }}$ $\overline{W R} \uparrow$ to Addiress Hold Time	160*		80		35		20	
46	TsRESET(Cr)	$\overline{\text { RESET }}$ to Clock \uparrow Setup Time	90	-	60	-	60	-	45	-
47	ThRESET(Cs)	$\overline{\text { RESET }}$ to Clock \uparrow Hold Time	-	0	-	0	-	0	-	0
48	TslNTI(Cr)	INT to Clock \uparrow Setup Time	80	-	80	-	70	-	55	-
49	ThinTr(Cr)	INT to Clock \uparrow Hold Time	-	0	-	0	-	0	-	0
50	TdMII(IORQt) - $\overline{\mathrm{MI}} \downarrow$ to $\overline{\mathrm{IORQ}} \downarrow$ Delay		920*		565		$365{ }^{\circ}$		270*	
51	TdCl(IORQf)	Clock \downarrow to $\overline{\text { IORQ }} \downarrow$ Delay	-	110	-	85	-	70	-	60
52	TdCl(JORQr)	Clock \uparrow to $\overline{\text { IORQ }} \uparrow$ Delay	-	100	-	85	-	70	-	60
53	$\mathrm{TdCl}(\mathrm{D})$	Clock \downarrow to Data Valid Delay	-	230	-	150	-	130	-	115

- For clock periods other than the minimums shown in the table. calculate parameters using tine expressions in the table on the following page.
A:t timings are preliminary and subject to change.

Footnotes to AC Characteristics

Number	Symbol	28400	28400A	284008
1	Tc	TwCh + TwCl + TrC + TfC	TwCh + TwC! + TrC + TKC	$\mathrm{Tw} \mathrm{Ch}+\mathrm{TwCl}+\mathrm{T} \cdot \mathrm{C}+\mathrm{Tf} \mathrm{C}$
2	TwCh	Although static by design,	Although static by design,	Although static by design.
		TwCh of greater than	TwCh of greater than	TwCh of greater than
		$200 \mu \mathrm{~s}$ is not guaranteed	200μ is not guaranteed	$200 \mu \mathrm{~s}$ is not guaranteed
7	TdA(MREQ1)	TwCh + TtC - 75	TwCh + TKC-65	TwCh + TfC - 50
10	TwMREQh	TwCh + TiC - 30	TwCh + TfC-20	TwCh+TfC-20
11	TwMREQ!	TcC-40	TcC-30	TcC-30
26	TdA(IORQf)	TCC-80	TCC-70	TcC-55
29	TdD(WRi)	TCC-210	TcC-170	TcC-140
31	TwWR	TCC-40	TcC-30	TcC-30
33	TdD(WRI)	TwCl-TrC-180	$\mathrm{TwCl}+\mathrm{TrC}-140$	$\mathrm{T} w \mathrm{Cl}+\mathrm{TrC}-140$
35	TdWRr(D)	$\mathrm{TwCl}+\mathrm{TrC}-80$	$\mathrm{TwCl}+\mathrm{Tr} \mathrm{C}-70$	TwCl $+\mathrm{Tr} \mathrm{C}-55$
45	$\operatorname{TdCTr}(\mathrm{A})$	TwCl + T $\cdot \mathrm{C} \cdot .40$	$\mathrm{TwCl}+\mathrm{TrC}-50$	TwCl $+\mathrm{Tr} \mathrm{C}-50$
50	TdMul(IORQf)	$2 \mathrm{Tc} \mathrm{C}+\mathrm{Tw} \mathrm{Ch}+\mathrm{TIC}-80$	2TcC + TwCh + TfC-65	2TcC + TwCh + TfC - 50

ACTest Conditions:
$V:=2.0 \mathrm{~V}$
$V_{\text {LLC }}=0.45 \mathrm{~V}$
$\because: \mathcal{V}=\mathrm{G} .8 \mathrm{~V}$
$v_{\text {iHC }}=V_{C C}-0.6 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
$\mathrm{VOH}_{\mathrm{OL}}=0.8 \mathrm{~V}$
FLOAT $= \pm 0.5 \mathrm{~V}$

Absolute Maximum Ratings

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature
under Bias \qquad Speclfied operating range Vol:ages on all inputs and outputs with respect to GND ... -0.3 V to +7.0 V Power Dissipation 1.5 W

Stresses greater than those listed under Absolute Max:mum Ratings may cause permanent damage to the device. This is a stress rating only: operation of the device at any condition above those indicated in the operational sections of these specitications is not implied. Exposure to absolute maximum rating conditions for extendod periods may affect device reliebility.

Standard Test Conditions

The characteristics below apply for the !ollowing standard test conditions, unless otherwise noted. All voltages are referenced to GND (0 V). Positive current flows into the referenced pin. Avallable operating temperature ranges are:

$$
\begin{aligned}
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& +4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\
& -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& +4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& +4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}
\end{aligned}
$$

All ac parameters assume a load capacitance of 50 pF . Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.

$Z 8400$

DC Cheracteristics

Symbol	Paramotor	Min.	Max	Unit	Test Condition
$V_{\text {ILC }}$	Clock Input Low Voitage	-0.3	0.45	V	
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	$\mathrm{V}_{\mathrm{CC}}-0.6$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.8	v	
$V_{\text {IH }}$	Input High Voltage	2.0	V_{CC}	v	
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{L}_{\mathrm{OL}}=1.8 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$\mathrm{LOH}^{\prime}=-250 \mu \mathrm{~A}$
${ }^{\text {c }}$ C	Power Supply Current				
	280		150	mA	
	280A		200	$m \mathrm{~A}$	
	280B		200	mA	
	280 H		200	mA	
ILI^{1}	Input Leakage Current	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{LN}}=0$ to V_{CC}
I_{L}	3.State Outpu: Leakage Current in Fizat	-10	10^{-}	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4$ to $\mathrm{V}_{\text {CC }}$

l. For military grade parts, IcC is 200 mA .
2. Typical rate for 28400 is 90 mA .
3. $A_{15}-A_{0}, D_{7} \cdot D_{0}$. MREQ, $\overline{I O R Q}, \overline{R D}$, and $\overline{W R}$.

Capacitance

Symbol	Paremeter	Min.	Max	Unit Note
CCLOCK	Clock Capacitance		35	pF
$C_{\text {IN }}$	Input Capacitance	5	pf	
COUT	Ouput Capacitance		10	pF

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$

Ordering Information

Tуре	Package	Tomp.	Clock	Description
3 3 00 Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$		$\mathbf{2 8 0}$ Central Processing Unit
$3-\infty 00$ B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
ここ-00 Fl	Frit Seal	$0 /+70^{\circ} \mathrm{C}$		
- 700 F6	Frit Seal	$-40 /+85^{\circ} \mathrm{C}$		
3 3 000 Dl	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
25*00 D6	Ceramic	$-40 \%+85^{\circ} \mathrm{C}$	2.5 MHz	
73400 D2	Ceramic	$-55 /+125^{\circ} \mathrm{C}$	2.5 MHz	
25400 Cl	Plastic Chip-Carrier	$0 \%+70^{\circ} \mathrm{C}$		
23400 C6	Plastic Chip-Carrier	$-40 \%+85^{\circ} \mathrm{C}$		
75+00 K1	Ceramic Chip-Carrier	$0 \%+70^{\circ} \mathrm{C}$		
25:00 K6	Ceramic Chip-Carrier	$-40 \%+85^{\circ} \mathrm{C}$		
25*00 K2	Ceramic Chip-Carrier	$-55 /+125^{\circ} \mathrm{C}$		
25i00A Bl	Plastic	$0 \%+70^{\circ} \mathrm{C}$		
25ican 66	Plastic	$-40 \%+85^{\circ} \mathrm{C}$		
	Frit Seal	$0 \%+70^{\circ} \mathrm{C}$		
25-00A F6	Frit Sea!	$-40 \%+85^{\circ} \mathrm{C}$		
23:00. ${ }^{\text {Dl }}$	Ceramic	$0 \%+70^{\circ} \mathrm{C}$		
28400A D6	Ceramic	$-40 \%+85^{\circ} \mathrm{C}$	$4.0 \mathrm{MHz}$	
28400A D2	Ceramic	$-55 /+125^{\circ} \mathrm{C}$	4.0 MHz	
28400A Cl	Plastic Chip-Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z3400A C6	Plastic Chip-Carrier	$-40 /+85^{\circ} \mathrm{C}$		
28400 A KI	Ceramic Chip-Carrier	$0 /+70^{\circ} \mathrm{C}$		
28400A K6	Ceramic Chip-Carrier	$-40 /+85^{\circ} \mathrm{C}$		
2840CA K2	Ceramic Chip-Carrier	$-55 /+125^{\circ} \mathrm{C}$		
$23 \times 00 \mathrm{Bl}$	Plastic	$0 /+70^{\circ} \mathrm{C}$		
25:5C3 36	Plastic	$-40 \%+85^{\circ} \mathrm{C}$		
2545 Fl	Frit Seal	$0 \%+70^{\circ} \mathrm{C}$		
28-0C3 F6	Frit Seal	$-40 \%+85^{\circ} \mathrm{C}$		
234003 Dl	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
26400B D6	Ceramic	$-40 \%+85^{\circ} \mathrm{C}$		
Z8400B D2	Ceramic	$-55 /+125^{\circ} \mathrm{C}$	6.0 MHz	
$78400 \mathrm{BCl}$	Plastic Chip-Carrier	$0 \times+70^{\circ} \mathrm{C}$		
$284003 \mathrm{C6}$	Plastic Chip-Carrier	$-40 \%+85^{\circ} \mathrm{C}$		
284003 Kl	Ceramic Chip-Carrier	$01+70^{\circ} \mathrm{C}$		
284003 K 6	Ceramic Chip-Carrier	$-40 \%+85^{\circ} \mathrm{C}$		
234003 K2	Ceramic Chip-Carrier	$-551+125^{\circ} \mathrm{C}$		
Z8-001: Bl	Plastic	$01+70^{\circ} \mathrm{C}$		
$20 \text { B6 }$	Plastic	$-40 \%+85^{\circ} \mathrm{C}$		
28400: F1	Frit Seal	$0+70^{\circ} \mathrm{C}$		
28400H F6	Frit Seal	$-40 \%+85^{\circ} \mathrm{C}$		
28400H DI	Ceramic	$0+70^{\circ} \mathrm{C}$		
28400H D6	Ceramic	$-401+85^{\circ} \mathrm{C}$	8.0 MHz	
28400 HCl	Plastic Chip-Carrier	$0+70^{\circ} \mathrm{C}$		
$28400 \mathrm{HC}$	Plastic Chip-Carrier	$-40 \%+85^{\circ} \mathrm{C}$		
$23400 \mathrm{H} \mathrm{K1}$	Ceramic Chip-Carrier	$0 \%+70^{\circ} \mathrm{C}$		
22400 H K6	Ceramic Chip-Carrier	$-40 \%+85^{\circ} \mathrm{C}$		

[^0]:

[^1]: －For clock periods ctis：：\because an the minimums shown in the
 ：abie，calculate paramries ：3sing the exprestions in the table on
 the following page．
 Aii timings are prelim：ne－z and subject to change．

